
1

Randomized Optimization for 4-Peaks,
n-Queens, and Neural Network Weight

Training
Shawn Egan

Georgia Institute of Technology
segan3@gatech.edu

I. INTRODUCTION

Three Randomized Optimization (RO) algorithms are
applied to two discrete optimization problems: 4-peaks
and n-queens. The three ROs are randomized hill climb-
ing (RHC), simulated annealing (SA), and a genetic
algorithm (GA). The purpose of the comparison on
two separate problems is to elucidate the strengths and
weaknesses of each RO on different tasks. Each RO is
optimized on problems of different sizes for both 4-peaks
and n-queens; results are then compared.

The same three ROs are then applied to a Neural
Network (NN) weight training task. The NN architecture
is optimized for a Spotify binary classification task with
slight modifications from Assignment 1. Changes to the
classification task are discussed in Section II: Methods.
The NN is initially trained using gradient descent (GD),
in order to have a baseline for comparison. Hyper-
parameters are tuned for all 3 ROs to maximize the per-
formance of each algorithm, and then all 4 optimization
algorithms are compared.

A. The 4-Peaks Problem

The 4-peaks problem is concerned with optimizing the
number of leading ones and trailing zeroes in a bit-string
of n bits. The fitness of a given bit-string also depends
on a parameter, T, which is set to a given proportion of
n. The fitness function is the maximum of the number
of leading ones and trailing zeroes, plus a bonus of n if
the maximum leading ones and trailing zeroes are both
greater than T. This fitness function leads to two global
maxima (one with more leading ones and one with more
leading zeroes), plus two local maxima (all ones or all
zeroes: no bonus n). Increasing the value of T leads
to larger basins of attraction around the local maxima,
making the problem more complex. The search space
grows on the order of 2n, meaning larger bit-strings are
computationally challenging to optimize. The complex-
ity of larger problems in addition to the existence of local
minima makes 4-peaks a good candidate for comparison
of the RO algorithms.

B. The n-Queens Problem

The n-queens problem pertains to organizing n queens
on an n × n chessboard such that no two queens are
attacking one another. A given state x of the n-queens
problem is represented as an n-length vector of integers.
The individual xi’s represent the row location of the
queen in column i. Fitness of a given state is computed
as the number of non-attacking queens, therefore posing
this as a maximization problem. The n-queens problem
has a simple definition, but the search space grows on
the order of nn(states = Πn−1

i=0 (n
2 − i)), making it a

nontrivial problem that will allow detailed comparison
of the RO algorithms. Additionally, n-queens does not
contain local maxima and therefore will allow RHC and
SA to avoid becoming stuck in local basins.

C. NN Weight Training

Neural network weight training is a significantly more
complex task as compared to 4-peaks and n-queens.
In the NN selected for comparison, there are 100s of
continuous weight values to optimize. Optimizing the
weights of a NN will allow detailed comparison of the
RO algorithms on a large, continuous-valued problem.
Additionally, the performance of the different models
will provide additional metrics for comparison.

Hypothesis 1: The NN utilizing GA optimization will per-
form worse than RHC and SA.

Justification
Genetic algorithms are computationally expensive to

compute [1]. The GA uses a ”population” of problem
states which, in the case of NN training, are individual
settings for the model weights. The GA then has to
evaluate the fitness of each individual state, and generate
a new population to evaluate at the next generation.
The process of evaluating each set of NN weights for
the entire population involves orders of magnitude more
computations than RHC or GA.

Hypothesis 2: The NN utilizing SA optimization will out-
perform the RHC NN.



2

Justification
SA is similar to RHC but uses additional parameters

to switch from exploration of the space to exploitation
[3]. RHC follows the direction of increasing fitness func-
tion, whereas SA has a small probability of selecting a
random direction to explore. As training continues, the
probability to select a random direction decreases and
SA begins following the direction of increasing fitness.
SA will outperform RHC because SA can explore more
of the weight space due to the use of the temperature
decay.

Hypothesis 3: All three RO NNs will perform worse than
GD.

Justification
Gradient descent is the standard optimization algo-

rithm used for neural networks [2]. If one of the RO
algorithms generally performed better than GD for NN
weight training, it would be more popular in the field
of machine learning. The small dataset size and simple
binary-classification problem should allow GD to show
its strength in comparison to the RO algorithms.

II. METHODS

A. Four-Peaks and n-Queens
The 4-peaks problem is inherently a maximization

problem, therefore no modifications are necessary. The n-
queens problem is traditionally a minimization problem
where the number of attacking-queens is minimized. A
custom fitness function is used for n-queens experiments
that translates it to a maximization problem: fitness is
incremented every time a queen does not attack another
queen. The number of checks for queen interactions
given a board of size n is ∑n−1

i=1 i, which is the maximum
fitness for a board of size n.

Each RO algorithm’s hyper-parameters are optimized
on eight 4-peaks problems (T = 0.25) of different sizes,
as well as 4 n-queens problems of different sizes. Five
random seeds are used for each optimization problem
for reproducibility and to avoid the influence of outlier
performance of individual algorithms. All three RO al-
gorithms are optimized on attempt number, and there is
no maximum iteration number set. The restart number
for RHC, the temperature and decay rate for SA, and the
population size and mutation probability are optimized
for GA. Optimal parameters are listed in the results for
each RO algorithm on each optimization problem for
select sizes.

Once optimal parameters are found for all problems,
performance of each RO algorithm is compared across
all problem sizes for 4-peaks and n-queens. The best
fitness, run time, and number of function evaluations
are compared for each problem.

B. NN Weight Training
1) Modified Classification Problem
The Spotify classification problem from Assignment

1 involves using a multi-class classifier to predict the

”size category” of a hit-song. ”Size category” is defined
by the number of streams; songs are grouped together
if they have a similar number of streams. Five different
streaming categories are defined. This classification task
was modified to create a binary-classification problem:
the lowest 4 categories (streaming number <700M) are
combined into one category, and the largest category is
selected as the positive label.

2) Hyper-parameter Tuning
Hyper-parameter tuning is performed with 5-fold

cross validation to select a gradient descent model for
the new classification problem. Learning rate, hidden
layer sizes, and activation functions are included in
the search space, and F1macro is selected for scoring .
The top 5 performing models are shown in Table I,
where ’Performance’ is the validation score of the given
model compared to the rank-1 model, and ’Speed’ is
the relative fit time of the given model compared to the
rank-1 model. Models 1-4 utilize a Sigmoid activation
function, and model 5 uses ReLU. Model 3 was selected
for comparison of the RO algorithms, as it has 98% of
the performance of the top model but 51x faster training
speed. This increased speed will assist in model training
using the RO algorithms, as the RO algorithms are not
as efficient as back propagation. All 3 RO models use the

TABLE I: Top Models

Rank Layers LR Performance Speed

1 (16,8,8) 0.0001 100% 1x

2 (16,8,8) 0.001 100% 10x

3 (8,8) 0.01 98% 51x

4 (8,8) 0.0001 98% 1x

5 (8,4,2) 0.001 97% 1x

same hidden layer sizes and Sigmoid activation function
as Model 3 from Table I and 5-fold cross validation for
hyper-parameter tuning. The RHC model is tuned on
number of restarts and learning rate. The SA model is
tuned on learning rate and temperature decay; initial
temperature was found to have no effect on NN training.
The GA model is tuned on population size and mutation
probability. Learning rate for RHC and SA algorithms is
an effective ’step size’ used when computing neighbor
weights, since NN weight optimization is a continuous
optimization task.

3) Model Comparisons
Once optimal hyper-parameters are selected for each

of the 3 RO models, all models are trained with no max-
imum iterations set, and compared against each other
and against gradient descent on training loss, training
time, number of function evaluations, and other machine
learning metrics.



3

III. RESULTS

A. Four-Peaks and n-Queens

After hyper-parameter tuning, the optimal parameters
for each algorithm for given problem sizes are shown in
Tables II and III.

TABLE II: 4-Peaks Optimal Parameters

RHC SA GA
n Attempts Restarts Temp Decay Pop

Size
Mut
%

5 10 1 1 1e-4 50 0.05
35 100 25 5 1e-4 200 0.1
65 100 100 1 2.5e-3 800 0.1
95 100 100 1 5e-4 400 0.1

TABLE III: n-Queens Optimal Parameters

RHC SA GA
n Attempts Restarts Temp Decay Pop

Size
Mut
%

4 25 1 1 1e-4 50 0.2
12 50 100 2 1e-3 800 0.1
20 100 25 5 5e-4 400 0.4
28 100 100 1 2.5e-3 400 0.05

1) Best Fit
Figs. 1 and 2 show the 5-seed average best fitness1 for

both problems over the ranges of problem sizes.

Fig. 1: 5-seed average best fitness for 4-peaks of different
sizes

2) Function Evaluations
Figs. 3 and 4 show the 5-seed average number of func-

tion evaluations for the 4-peaks and n-queens problems
over the range of problem sizes, respectively.

3) Run Time
Figs. 5 and 6 show the 5-seed average algorithm run

time for the 4-peaks and n-queens problems over the
range of problem sizes, respectively.

14-peaks for n=5 shows all three models returning non-optimal
states, as a result of the fitness function incorrectly evaluating [1,1,0,0,0]
or [1,1,1,0,0] as having fitness of 5.0

Fig. 2: 5-seed average best fitness for n-queens of differ-
ent sizes

Fig. 3: 5-seed average number of function evaluations for
4-peaks of different sizes

Fig. 4: 5-seed average number of function evaluations for
n-queens of different sizes

B. NN Weight Training
Table IV shows the fit time, number of function

evaluations, F1macro, and number of iterations for all 4
optimization algorithms on a NN with hidden layers
(8,8) and Sigmoid activation function.

1) Hyper-Parameters
Optimal model hyper-parameters for each algorithm

are as follows:
• GD: learning rate: 0.01
• RHC: step size - 0.5, restarts - 20



4

Fig. 5: 5-seed average run time for 4-peaks of different
sizes

Fig. 6: 5-seed average run time for n-queens of different
sizes

TABLE IV: Model Comparison

Algorithm Time (s) FEvals F1macro Iterations

GD 0.3 401 0.86 136

RHC 5.6 4678 0.85 453

SA 24.0 17834 0.83 45518

GA 56.1 80703 0.78 196

• SA: step size - 1.0, decay - 0.15
• GA: pop size - 400, mutation prob - 0.001
Fig. 7 shows the effect of restart number on validation

performance for the RHC model. Fig. 8 shows the effect
of decay rate on validation performance for the SA
model.

Fig. 9 shows the effect of step size on validation
performance for the SA and RHC models.

Fig. 10 shows the effect of mutation probability on
validation performance for the GA model.

Fig. 11 shows the effect of population size on valida-
tion performance for the GA model.

2) Learning Curves
Fig. 12 shows the learning curves for all four models,

where the red curves are training score and green curves

Fig. 7: RHC error rate vs restarts

Fig. 8: SA error rate vs decay

Fig. 9: SA and RHC error rate vs step size

are validation score.
3) Training Loss & Time
Fig. 13 shows the cross-entropy loss over training

iterations for all four optimization algorithms.
Fig. 14 shows the cross-entropy loss over training

iterations for simulated annealing, since Fig. 13 does not
display the full range of training iterations for simulated
annealing.

Similar to Fig. 14, Fig. 15 shows the full range of cross-
entropy loss for random hill climbing.

4) Function Evaluations
Fig. 16 shows the log-linear plot of function eval-

uations over the first 250 training iterations for all 4
optimization algorithms.



5

Fig. 10: GA error rate vs mutation probability (maximum
iterations = 5000)

Fig. 11: GA error rate vs population size (maximum
iterations = 5000)

Fig. 12: All 4 model learning curves

IV. DISCUSSION

A. Four-Peaks and n-Queens

1) Fitness
From Figs. 1 and 2, the performance of RO algorithms

over problem sizes for both 4-peaks and n-queens can
be compared.

All three ROs are able to find optimal states for all
n-queens problem sizes. This is due to the nature of
the n-queens problem: the number of optimal solutions

Fig. 13: All 4 model training cross-entropy losses

Fig. 14: Simulated annealing cross-entropy loss

Fig. 15: Random hill climbing cross-entropy loss

grows on the same order as the state space (approx.
(0.143n)n[4]). Assuming optimal solutions are evenly
distributed through the state space, random optimiza-
tion should be able to traverse enough of a given sub-
space to reach one of the global maxima. There are no
local maxima, therefore RHC and SA do not get stuck in
local basins.

The difference in performance of the RO algorithms
is apparent for the 4-peaks problem. Since the 4-peaks
problem contains 2 local maxima and 2 global maxima,
the RHC and SA algorithms are seen to under-perform
the GA algorithm for problem sizes greater than 20 bits.
This is due to RHC and SA becoming stuck in the local



6

Fig. 16: All 4 model function evaluations

maxima basins. Table II shows the optimal number of
restarts for RHC increasing from 1 to 25 to 100 over
the range of problem sizes, as RHC needs additional
restarts to search the problem space and attempt to
escape the local maxima. For problem sizes over 65 bits,
RHC shows decreasing fitness. This could be avoided by
increasing the number of restarts beyond 100, at the cost
of computational complexity.

SA uses larger initial temperatures and/or smaller de-
cay values for larger 4-peaks problems. This is similar to
RHC increasing the restart number; larger temperatures
and smaller decay values allow the SA algorithm to
explore more of the state space before switching to an
exploitative strategy.

The GA finds global maxima up to 4-peaks problem
sizes of 50 bits. Past problem sizes of 80 bits, GA
struggles to improve optimization performance even
with larger population sizes. Lower mutation probabil-
ity would aid in performance improvements for larger
problem sizes, as the generated populations of future
iterations would contain less random states from muta-
tion. For n = 80 there are 1.2e24 possible states for the
algorithm to evaluate. Increased population sizes would
help GA see more of the problem space for evaluation.

2) Function Evaluations
Figs. 3 and 4 show the stark differences of the ROs on

the two discrete problems.
For 4-peaks, all 3 RO algorithms use between 103 to

104.5 function evaluations for problem sizes greater than
20 bits. This is a result of the complexity of 4-peaks
scaling on the order of 2n; for n = 20 there are 1,048,576
states but only 2 are global maxima. The number of
required function evaluations scales exponentially for
the 4-peaks problems, and every problem only has 2
global maxima. The problem gets exponentially harder
with increasing size.

For n-queens, GA uses significantly less function eval-
uations than RHC and SA. This is due to the nature of
the state space for n-queens in conjunction with the uti-
lization of populations by GA. GA generates hundreds
of different chess board states and evaluates each one at
every iteration. RHC and SA need orders of magnitude

more function evaluations in order to calculate the next
state step.

3) Run Time
Figs. 5 and 6 show the difference in iteration time for

the two problems. GA has exponentially increasing run-
times up to a problem size of 65 bits for 4-peaks. Past the
problem size of 65 bits, GA is limited by the population
size and cannot discover the global optimum. As prob-
lem size increases, the 4-peaks state space becomes expo-
nentially more sparse with respect to the global optima.
GA has approximately linearly increasing run-times for
n-queens problems of increasing size. Since the number
of optima increases at a rate similar to the size of the
state space, the sparsity of the state space with respect to
solutions increases quadratically (n2). If n-queens prob-
lems of larger size are evaluated, GA run time would
be expected to increase quadratically. RHC and SA have
much faster run-times for n-queens even though RHC
and SA use many more function evaluations. This is
due to the complexity of evaluating hundreds of states
in each population for the GA algorithm. Though GA
uses significantly less function evaluations for n-queens,
each function evaluation is much more computationally
complex than those for RHC and SA.

B. NN Weight Training

1) Hyper-Parameters
Fig. 7 shows the importance of restarts for RHC

optimization. Without restarts, the RHC algorithm is
unable to explore the weight space effectively to reach
an optimal state. Greater than 8 restarts shows negligible
validation performance increase, and greater than 20
restarts (not shown) gives no performance increase. If
there are too few restarts, the algorithm is likely to
get stuck in local optima and cannot explore the full
weight space. These results reinforce the importance of
optimizing the restart parameter for the RHC NN.

Fig. 8 shows the effect that temperature decay has on
validation performance for SA optimization. Decay rates
that are too small (< 10−3) do not end up transitioning
from exploration to exploitation in under 10k iterations,
and end up randomly wandering the state space. Decay
rates greater than 10−3 are able to effectively transition
from exploration to exploitation and can move towards
optimal weight settings.

Fig. 9 shows the influence of step size on RHC and SA
algorithms. For RHC, the optimal step size is 0.5 for the
given NN. This step size is an order of magnitude higher
than the learning rate for GD. Step size for RHC is used
to generate ”neighbor” weights which are then scored
and evaluated as potential new states. RHC necessitates
a large enough value for step size so that the next state
evaluated is sufficiently different in terms of training
score.

For SA, the optimal step size is 1.0 for the given NN.
This step size is used in the same way as for RHC, and
is 2 orders of magnitude higher than the learning rate



7

for GD. The step size for SA is twice that of RHC due
to SA utilizing the exploration stage (hot temperature).
SA needs a higher step size in order to explore more of
the state space during the exploration stage.

Fig. 10 shows the effects of mutation probability for
GA optimization (pop=400) with a maximum of 5000 it-
erations. Iterations were limited to enhance computation
speed. Mutation probabilities too small (< 10−3) do not
allow proper exploration of the weight space. Without
mutations, the algorithm is only evaluating combina-
tions of weights already seen. Mutation probabilities too
large (> 10−3) are unable to exploit the performance of
previous iterations, as mutations may remove weights
that perform well.

Fig. 11 shows the effects of population size on GA
optimization (mutation probability=0.001) with a maxi-
mum of 5000 iterations. Population sizes greater than or
less than 400 show worsening validation performance.
Smaller population sizes do not allow enough explo-
ration of the weight space, and larger population sizes
need smaller mutation probabilities to limit the number
of mutated child states.

2) Learning Curves
Fig. 12 shows that GD, RHC, and SA learn over the

full range of training sizes. GA, on the other hand, shows
erratic behavior for training sizes below 400 samples.
This suggests that the GA optimizer will benefit from
larger training sets, as the training and validation curves
improve beyond training sizes of 400 samples. GD con-
verges with the smallest training proportion, followed
by RHC and then SA. The RHC optimizer would benefit
from additional training samples, as the validation per-
formance is on an upward trajectory at the furthest right
point of the learning curve. The SA algorithm will not
benefit from additional training samples, as the training
curve flattens out at the furthest right point of the graph.
The GD algorithm would not benefit from additional
training samples, as the training and validation curves
flatten out beyond 300 training samples.

These results show the power of gradient descent for
neural network weight optimization, and the weakness
of genetic algorithms for small datasets.

3) Cross-Entropy Loss
Figs. 13, 14, and 15 show the difference in required

iterations for each optimization algorithm as well as the
number of iterations required to find optimal weights.
Gradient descent arrives near the minima in less than
25 iterations, shown by the steep decline to the left of
the GD loss curve. The genetic algorithm has a similar
shaped curve that is less steep and takes more iterations
to arrive near the minima. Random hill climb needed
double the iterations as compared to GA to arrive near
the minima. Simulated annealing needed orders of mag-
nitude more iterations than all other algorithms.

Simulated annealing requires more iterations due to
the focus on exploration at earlier iterations. Since SA
selects a random next state some of the time (high tem-
perature), it will take more iterations to begin heading

toward the minima. Once the temperature has ”cooled
off,” SA begins exploiting the shape of the weight space
and heading towards the minima.

4) Function Evaluations
Fig. 16 shows that gradient descent, random hill climb,

and simulated annealing all use roughly the same num-
ber of function evaluations at each iteration. Since RHC
and SA are computing a surrogate gradient (evaluating
the slope/direction using the score of the neighboring
weights), they are similar to GD for number of function
evaluations.

The genetic algorithm uses roughly 2 orders of mag-
nitude more function evaluations at a given iteration as
compared to all other optimization algorithms. This is
due to the evaluation of hundreds of weight matrices
for every iteration’s population.

5) Iteration Number, Training Time, and Model Perfor-
mance

Table IV gives a summary of the four metrics investi-
gated for each optimization algorithm. Gradient descent
performed best with respect to time (0.3s) and iterations
(136). The genetic algorithm had the highest training
time (56.1s), but the second least iterations (196) be-
hind gradient descent. RHC required only 453 iterations
with the second fastest training time of 5.6s. Simulated
annealing had the second longest training time (24s)
and the highest number of iterations by 2 orders of
magnitude (45k).

Gradient descent marginally outperformed both RHC
and SA for F1macro score, and the genetic algorithm
performed worst. RHC marginally outperformed SA for
F1macro score, and SA took over 4x longer to train with
100x the iterations.

The genetic algorithm shows very little benefits for
NN weight training, as it’s high training time and re-
quired function evaluations result in worse performance
compared to all other optimization algorithms. Even
though GA required only 196 iterations, each iteration
requires ∼0.288s for ∼400 function evaluations resulting
in the poor training time observed.

Additionally, the genetic algorithm is poorly suited
for the task of optimizing continuous NN weights. The
crossover and mutation steps of the genetic algorithm
do not simulate the heuristic of the other three algo-
rithms: moving towards an optimal point on a surface.
Crossover and mutation incorporate additional random-
ness in the new population for the next iteration.

C. Conclusion

The investigation of performance on 4-peaks and n-
queens enabled the comparison of the RO algorithms
for two very different discrete-optimization problems. It
was found that RHC and SA algorithms have a tendency
to get ”stuck” in local maxima (4-peaks), and this can
be reduced for RHC by increasing restart size. SA is
less prone to local maxima basins due to the use of the
temperature parameter to explore, then exploit the state



8

space. The n-queens problem comparison showed that
all three RO algorithms can be successful in problems
with very large state spaces, and GA optimization is
prone to long run times for problems with large state
spaces.

The evaluation of ROs for NN weight training showed
the strength of gradient descent in comparison. Ad-
ditionally, the comparison of performance metrics like
time and function evaluations showed the challenge that
genetic algorithms pose with respect to computational
complexity. The performance of RHC and SA algorithms
was found to be similar with respect to the F1macro score,
but SA required more iterations and had a slower fit
time due to the use of the temperature parameter for
exploration.

Hypothesis 1 is proven true by the results discussed.
The GA NN is unable to outperform the RHC and
SA algorithms, due to high computational complexity.
Additionally, the GA is limited by the small dataset size
and would perform better on larger datasets.

Hypothesis 2 is refuted by the results discussed. Tak-
ing only F1macro into account, RHC outperforms SA for
NN weight training. RHC is able to outperform SA with
significantly less training time and iterations. RHC’s
utilization of restarts leads to a more efficient exploration
of the weight space for this NN as compared to SA’s
temperature decay.

Hypothesis 3 is proven true by the results discussed.
GD outperforms all 3 RO algorithms for all 4 metrics
considered. This result is supported by decades of re-
search in the field of machine learning.

D. Limitations and Future Work
The performance of the GA optimizer is limited by

computational capacity. Large problem sizes for 4-peaks,
as well as the NN weight training would benefit from
additional compute power.

Additionally, the use of the Spotify binary-
classification task with 800 sample dataset limits
the conclusions drawn from the experiments. Further
investigation involving comparison of performance on
separate machine learning tasks with larger datasets
will allow broader conclusions to be made about each
RO algorithm.

V. RESOURCES

[1] Nopiah, Z. M., Khairir, M. I., Abdullah, S., Baharin M. N.,
and Arifin A. ”Time Complexity Analysis of the Genetic Al-
gorithm Clustering Method”. World Scientific and Engineering
Academy and Society (WSEAS), pp. 171-176. Accessed: March. 2,
2025. doi: 10.5555/1807817.1807849. https://dl.acm.org/doi/abs/
10.5555/1807817.1807849

[2] Ruder, S. ”An overview of gradient descent optimization algo-
rithms”. Insight Centre for Data Analytics, NUI Galway. Accessed:
March. 2, 2025. doi: https://doi.org/10.48550/arXiv.1609.04747
https://arxiv.org/abs/1609.04747

[3] Carnegie Mellon Univerisity, School of Computer Science.
”Simulated Annealing”. https://www.cs.cmu.edu/afs/cs.cmu.
edu/project/learn-43/lib/photoz/.g/web/glossary/anneal.html

[4] Wikipedia. ”Eight queens puzzle”. Wikipedia. (2025). Accessed: Mar.
2, 2025. https://en.wikipedia.org/wiki/Eight queens puzzle

[5] Nakamura, K. ”ML LaTeX Template”. GitHub. (2023).
Accessed: Feb. 5, 2025. https://github.com/knakamura13/
cs7641-ml-study-materials-2023/tree/main

https://dl.acm.org/doi/abs/10.5555/1807817.1807849
https://dl.acm.org/doi/abs/10.5555/1807817.1807849
https://arxiv.org/abs/1609.04747
https://www.cs.cmu.edu/afs/cs.cmu.edu/project/learn-43/lib/photoz/.g/web/glossary/anneal.html
https://www.cs.cmu.edu/afs/cs.cmu.edu/project/learn-43/lib/photoz/.g/web/glossary/anneal.html
https://en.wikipedia.org/wiki/Eight_queens_puzzle
https://github.com/knakamura13/cs7641-ml-study-materials-2023/tree/main
https://github.com/knakamura13/cs7641-ml-study-materials-2023/tree/main

	Introduction
	The 4-Peaks Problem
	The n-Queens Problem
	NN Weight Training

	Methods
	Four-Peaks and n-Queens
	NN Weight Training
	Modified Classification Problem
	Hyper-parameter Tuning
	Model Comparisons


	Results
	Four-Peaks and n-Queens
	Best Fit
	Function Evaluations
	Run Time

	NN Weight Training
	Hyper-Parameters
	Learning Curves
	Training Loss & Time
	Function Evaluations


	Discussion
	Four-Peaks and n-Queens
	Fitness
	Function Evaluations
	Run Time

	NN Weight Training
	Hyper-Parameters
	Learning Curves
	Cross-Entropy Loss
	Function Evaluations
	Iteration Number, Training Time, and Model Performance

	Conclusion
	Limitations and Future Work

	Resources
	

